Introduction	Firms	Households	Equilibrium
000	0000	00000000000	00000000

Monetary Economics

Extension 1: The Sticky-Wages Extension

Olivier Loisel

ENSAE

October - November 2024

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	00000000

Motivation

- In the basic NK model (presented in Chapter 1), the **labor market** is assumed to be **perfectly competitive**:
 - all private agents are wage-takers, not wage-setters,
 - the nominal wage freely adjusts so as to clear the labor market.
- However, there is **empirical evidence** of nominal-wage stickiness, as seen in the general introduction.
- This extension introduces **nominal-wage stickiness** into the basic NK model and analyzes its implications for MP.
- Following Erceg et al. (2000), nominal-wage stickiness is modelled in the same way as price stickiness, by assuming that workers
 - have monopoly power, so that they are wage-setters, not wage-takers,
 - face **Calvo-type constraints** on the frequency with which they can adjust wages.

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	00000000

Main results

- Wage-inflation and price-inflation dynamics are described by similar equations (closely related to the NK Phillips curve).
- 2 There are four distortions:
 - monopolistic competition and nominal rigidities in the goods market,
 - monopolistic competition and nominal rigidities in the labor market.
- MP should have three objectives: stabilizing the output gap, price inflation, and wage inflation.
- In a specific case, optimal MP fully stabilizes a weighted average of priceand wage-inflation.

Introduction	Firms	Households	Equilibrium
00●	0000	00000000000	00000000

Outline

Introduction

2 Firms

O Households

- 4 Equilibrium
- Oistortions
- 6 Loss function

Optimal MP

Introduction	Firms	Households	Equilibrium
000	●000	00000000000	00000000

Production function

• Each firm *i* has the same **production function** as in Chapter 1:

$$Y_t(i) = A_t N_t(i)^{1-\alpha}.$$

• However, $N_t(i)$ is now an index of labor input used by firm *i*, defined by

$$N_t(i) \equiv \left[\int_0^1 N_t(i,j)^{rac{arepsilon_W-1}{arepsilon_W}} dj
ight]^{rac{arepsilon_W-1}{arepsilon_W-1}}$$
 ,

where

• $N_t(i, j)$ is the quantity of type-*j* labor employed by firm *i* at date *t*,

- ε_w is the (constant) elasticity of substitution between labor types,
- $j \in [0, 1]$ indexes the continuum of labor types.

Introduction	Firms	Households	Equilibrium
000	000	00000000000	00000000

Labor demand and wage index

- At each date t, given that each firm i employs an arbitrarily small fraction of each labor type j, it takes the nominal wages [W(j)]_{i∈[0,1]} as given.
- The **intratemporal FOCs** of firms' optimization problem are similar to those of RH's optimization problem in Chapter 1, and lead to similar **demand schedules**:

$$N_t(i,j) = \left[\frac{W_t(j)}{W_t}\right]^{-\varepsilon_w} N_t(i)$$

for all $(i,j) \in [0,1]^2$, where

$$W_t \equiv \left[\int_0^1 W_t(j)^{1-\varepsilon_w} dj\right]^{rac{1}{1-\varepsilon_w}}$$

is the aggregate wage index.

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	00000000

Intertemporal optimization problem

- In the same way as we got the aggregation result $\int_0^1 P_t(i)C_t(i)di = P_tC_t$ in Chapter 1, we get here that for all $i \in [0, 1]$, $\int_0^1 W_t(j)N_t(i,j)dj = W_tN_t(i)$.
- Therefore, the **intertemporal optimization problem** of a price-resetting firm can be rewritten in exactly the same way as in Chapter 1.
- We assume here for simplicity that the elasticity of substitution between differentiated goods is constant over time, and we note it ε_p.
- We add superscript "p" to some of Chapter 1's notations, and thus note
 - μ_t^p the average (log) price markup at date t,
 - $\hat{\mu}_t^p \equiv \mu_t^p \mu^p = -\widehat{mc}_t$ the deviation of μ_t^p from its steady-state value,
 - θ_p the probability of not being allowed to reset one's price at a given date.

Introduction	Firms	Households	Equilibrium
000	000●	00000000000	00000000

Price-inflation equation

• Therefore, the **intertemporal FOC** of firms' optimization problem can be rewritten, at the first order and in the neighborhood of the ZIRSS, as

$$\pi_t^p = \beta \mathbb{E}_t \left\{ \pi_{t+1}^p \right\} - \chi_p \widehat{\mu}_t^p,$$

where
$$\chi_{p} \equiv \frac{(1-\theta_{p})(1-\beta\theta_{p})}{\theta_{p}} \frac{1-\alpha}{1-\alpha+\alpha\varepsilon_{p}}$$
.

• This **price-inflation equation** can be interpreted as follows: whenever the current or expected future average price markups are below their desired value (which coincides with their steady-state value), firms currently resetting their prices raise the latter, thus generating positive inflation.

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	00000000

Utility function

- We consider a continuum of households indexed by $j \in [0, 1]$.
- The intertemporal utility function of each household j at date 0 is

$$\mathbb{E}_{0}\left\{\sum_{t=0}^{+\infty}\beta^{t}U\left[C_{t}(j),N_{t}(j)\right]\right\},$$

where

$$C_t(j) \equiv \left[\int_0^1 C_t(i,j)^{\frac{\varepsilon_p - 1}{\varepsilon_p}} di\right]^{\frac{\varepsilon_p}{\varepsilon_p - 1}}$$

and the **instantaneous utility function** U is the same as in Chapter 1.

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	0000000

Monopoly power

- We assume that each household supplies only one type of labor, and that each type of labor is supplied by only one household.
- This is why we index the continuum of households also by $j \in [0, 1]$.
- This implies that each household has some **monopoly power** in the labor market and is able to set its nominal wage (i.e., the price at which it supplies its specialized labor services).
- Alternatively, one may think of many households, with atomistic joint mass,
 - specializing in the same type of labor,
 - delegating their wage decision to a trade union acting in their interest.

Nominal-wage stickiness

- We model **nominal-wage stickiness** in the same way as price stickiness.
- So, at each date, only a fraction 1 − θ_w of households, drawn randomly from the population, re-optimize their nominal wage, where 0 ≤ θ_w ≤ 1.
- We assume **full consumption-risk sharing** across households (through the means of a complete set of security markets).
- This implies that, at each date,
 - the marginal utility of consumption is equalized across households,
 - all the wage-resetting households choose the same wage, as they face the same problem (so that there is a **representative wage-resetting household**).

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	00000000

Wage-optimization problem

 At each date t, the representative wage-resetting household chooses W^{*}_t to maximize the expected discounted sum of instantaneous utilities generated over the (uncertain) period during which its wage will remain unchanged,

$$\mathbb{E}_t\left\{\sum_{k=0}^{+\infty}(\beta\theta_w)^k U\left(C_{t+k|t}, N_{t+k|t}\right)\right\},$$

subject to the sequence of **labor-demand schedules** and **flow budget** constraints that are effective over this period, i.e., for $k \ge 0$,

$$N_{t+k|t} = \left(\frac{W_t^*}{W_{t+k}}\right)^{-\varepsilon_w} N_{t+k},$$

$$P_{t+k}C_{t+k|t} + \mathbb{E}_{t+k}\{Q_{t+k,t+k+1}D_{t+k+1|t}\} \le D_{t+k|t} + W_t^*N_{t+k|t} - T_{t+k},$$

where the notations are defined on the next slide.

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	00000000

Notations

- $Q_{t,t+1}$ denotes the stochastic discount factor for one-period-ahead nominal payoffs at date *t*, common to all households.
- For households that last reoptimized their wage at date t, and for $k \ge 0$,
 - $C_{t+k|t}$ denotes consumption at date t+k,
 - $N_{t+k|t}$ denotes labor supply at date t+k,
 - $D_{t+k|t}$ denotes the (random) nominal payoff at date t + k of the portfolio of securities bought at date t + k 1,
 - $\mathbb{E}_{t+k}\{Q_{t+k,t+k+1}D_{t+k+1|t}\}$ denotes therefore the market value at date t+k of the portfolio of securities bought at date t+k.

• For
$$k \ge 0$$
, $N_{t+k} \equiv \int_0^1 N_{t+k}(i) di$ denotes aggregate employment at date $t+k$.

Introduction	Firms	Households	Equilibrium
000	0000	0000000000	00000000

First-order condition I

• The FOC of this wage-optimization problem can be written as

$$\begin{split} \sum_{k=0}^{+\infty} (\beta \theta_w)^k \mathbb{E}_t \left\{ N_{t+k|t} \left[U_c \left(C_{t+k|t}, N_{t+k|t} \right) \frac{W_t^*}{P_{t+k}} \right. \\ \left. + \mathcal{M}_w U_n \left(C_{t+k|t}, N_{t+k|t} \right) \right] \right\} &= 0, \end{split}$$

where $\mathcal{M}_w\equiv rac{\varepsilon_w}{\varepsilon_w-1}$, or equivalently

$$\sum_{k=0}^{+\infty} (\beta \theta_w)^k \mathbb{E}_t \left\{ N_{t+k|t} U_c \left(C_{t+k|t}, N_{t+k|t} \right) \right\}$$
$$\left(\frac{W_t^*}{P_{t+k}} - \mathcal{M}_w MRS_{t+k|t} \right) = 0,$$

where $MRS_{t+k|t} \equiv -\frac{U_n(C_{t+k|t}, N_{t+k|t})}{U_c(C_{t+k|t}, N_{t+k|t})}$ is the marginal rate of substitution between consumption and work hours at date t + k for households that last reset their wage at date t.

Introduction	Firms	Households	Equilibrium
000	0000	000000000000	00000000

First-order condition II

• In the limit case of full wage flexibility ($\theta_w = 0$),

$$\frac{W_t^*}{P_t} = \frac{W_t}{P_t} = \mathcal{M}_w MRS_{t|t},$$

so that \mathcal{M}_w is the wedge between the real wage and the marginal rate of substitution prevailing in the absence of wage rigidity, i.e. the **desired gross** wage markup.

• At the ZIRSS,

$$\frac{W^*}{P} = \frac{W}{P} = \mathcal{M}_w MRS.$$

Introduction	Firms	Households	Equilibrium
000	0000	000000000000	00000000

Log-linearized FOC

 Therefore, log-linearizing the FOC around the ZIRSS yields the following wage-setting rule:

$$w_t^* = \mu^w + (1 - \beta \theta_w) \sum_{k=0}^{+\infty} (\beta \theta_w)^k \mathbb{E}_t \left\{ mrs_{t+k|t} + p_{t+k} \right\},$$

where $\mu^w \equiv \log \mathcal{M}_w$.

- The chosen wage w_t^* is thus increasing in
 - expected future prices, because households care about the purchasing power of their nominal wage,
 - expected future marginal disutilities of labor (in terms of goods), because households want to adjust their real wage accordingly, given expected future prices.

Introduction	Firms	Households	Equilibrium
000	0000	000000000000	00000000

Individual and average MRS

- Given the assumptions of
 - complete asset markets,
 - separability between consumption utility and labor disutility,

individual consumption is independent of individual wage history: for $k \ge 0$, $C_{t+k|t} = C_{t+k}$.

• Therefore, the (log) individual MRS can be written as

$$mrs_{t+k|t} = \sigma c_{t+k|t} + \varphi n_{t+k|t}$$

= $\sigma c_{t+k} + \varphi n_{t+k|t}$
= $mrs_{t+k} + \varphi (n_{t+k|t} - n_{t+k})$
= $mrs_{t+k} - \varepsilon_w \varphi (w_t^* - w_{t+k})$

where $mrs_{t+k} \equiv \sigma c_{t+k} + \varphi n_{t+k}$ is the (log) average MRS.

Rewriting the log-linearized FOC

• Therefore, the log-linearized FOC can be rewritten as

$$\begin{split} w_t^* &= \frac{1 - \beta \theta_w}{1 + \varepsilon_w \varphi} \sum_{k=0}^{+\infty} (\beta \theta_w)^k \mathbb{E}_t \left\{ \mu^w + mrs_{t+k} + \varepsilon_w \varphi w_{t+k} + p_{t+k} \right\} \\ &= \frac{1 - \beta \theta_w}{1 + \varepsilon_w \varphi} \sum_{k=0}^{+\infty} (\beta \theta_w)^k \mathbb{E}_t \left\{ (1 + \varepsilon_w \varphi) w_{t+k} - \widehat{\mu}_{t+k}^w \right\} \\ &= \beta \theta_w \mathbb{E}_t \left\{ w_{t+1}^* \right\} + (1 - \beta \theta_w) \left[w_t - (1 + \varepsilon_w \varphi)^{-1} \widehat{\mu}_t^w \right], \end{split}$$

where $\hat{\mu}_t^w \equiv \mu_t^w - \mu^w$ denotes the deviation of the (log) average wage markup $\mu_t^w \equiv (w_t - p_t) - mrs_t$ from its steady-state level μ^w .

Introduction	Firms	Households	Equilibrium
000	0000	000000000000000000000000000000000000000	00000000

Wage-inflation equation I

- In the same way as the dynamics of the aggregate price index P_t in Chapter 1, the dynamics of the aggregate way is day W_t can be written as
 - 1, the dynamics of the aggregate wage index W_t can be written as

$$W_{t} = \left[\theta_{w}\left(W_{t-1}\right)^{1-\varepsilon_{w}} + \left(1-\theta_{w}\right)\left(W_{t}^{*}\right)^{1-\varepsilon_{w}}\right]^{\frac{1}{1-\varepsilon_{w}}}$$

which can be log-linearized around the ZIRSS as

$$w_t = \theta_w w_{t-1} + (1 - \theta_w) w_t^*.$$

• Therefore, the log-linearized FOC can be further rewritten as

$$\pi_t^{\mathsf{w}} = \beta \mathbb{E}_t \left\{ \pi_{t+1}^{\mathsf{w}} \right\} - \chi_{\mathsf{w}} \widehat{\mu}_t^{\mathsf{w}},$$

where $\pi_t^w \equiv w_t - w_{t-1}$ denotes wage inflation and $\chi_w \equiv \frac{(1-\theta_w)(1-\beta\theta_w)}{\theta_w(1+\varepsilon_w \varphi)}$.

• This wage-inflation equation is similar to the price-inflation equation.

Wage-inflation equation II

- This wage-inflation equation can be interpreted in a similar way as the price-inflation equation: when the average wage is below the level consistent with maintaining the desired markup, households readjusting their nominal wage will tend to increase the latter, thus generating positive wage inflation.
- This wage-inflation equation replaces the condition w_t p_t = mrs_t obtained in Chapter 1.
- The imperfect adjustment of nominal wages generates a **time-varying** wedge between the real wage and the MRS of each household, and, as a result, between the average real wage and the average MRS.
- This leads to variations in the average wage markup and, given the wage-inflation equation, also in wage inflation.

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	00000000

Euler equation

• Similarly as in Chapter 1, one FOC of households' optimization problem is the **Euler equation**

$$\frac{Q_t}{P_t}U_c(C_t, N_{t|t-k}) = \beta \mathbb{E}_t \left\{ \frac{U_c(C_{t+1}, N_{t+1|t-k})}{P_{t+1}} \right\}$$

- This FOC equalizes, for a household that last reset its wage at date t k,
 - the loss in utility resulting from the decrease in C_t required to purchase one bond at date t,
 - the gain in expected utility resulting from the increase in C_{t+1} entailed by the payoff of that bond at date t + 1.
- The log-linearization of this Euler equation around the ZIRSS is

$$c_t = \mathbb{E}_t \left\{ c_{t+1} \right\} - \frac{1}{\sigma} \left(i_t - \mathbb{E}_t \left\{ \pi_{t+1}^p \right\} - \overline{i} \right),$$

exactly like in Chapter 1.

Introduction	Firms	Households	Equilibrium
000	0000	000000000000	●○○○○○○○

Output gap

- Let y_t^n denote the **natural level of output**, i.e. the level of output in the **absence of nominal rigidities** (both price and wage rigidities).
- In the same way as in Chapter 1, y_t^n can be shown to be equal to

$$y_t^n = \vartheta_y^n + \psi_{ya}^n a_t,$$

where $\vartheta_y^n \equiv \frac{1-\alpha}{\sigma(1-\alpha)+\varphi+\alpha} \left[\log\left(\frac{1-\alpha}{1-\tau}\right) - \mu^p - \mu^w \right]$ and $\psi_{ya}^n \equiv \frac{1+\varphi}{\sigma(1-\alpha)+\varphi+\alpha}.$

• Let $\widetilde{y}_t \equiv y_t - y_t^n$ denote the **output gap**.

Introduction Fi	irms	Households	Equilibrium
000 00	000	00000000000	0000000

Real-wage gap

- Let ωⁿ_t denote the natural real wage, i.e. the real wage ω_t ≡ w_t − p_t in the absence of nominal rigidities (again, both price and wage rigidities).
- In the same way as in Chapter 1, ω_t^n can be shown to be equal to

$$\begin{split} \omega_t^n &= \log\left(\frac{1-\alpha}{1-\tau}\right) + (y_t^n - n_t^n) - \mu^p \\ &= \vartheta_w^n + \psi_{wa}^n a_t, \end{split}$$

where $\vartheta_w^n \equiv \log\left(\frac{1-\alpha}{1-\tau}\right) - \frac{\alpha}{1-\alpha}\vartheta_y^n - \mu^p$, $\psi_{wa}^n \equiv \frac{1-\alpha\psi_{ya}^n}{1-\alpha}$, and n_t^n is work hours in the absence of nominal rigidities.

• Let $\widetilde{\omega}_t \equiv \omega_t - \omega_t^n$ denote the **real-wage gap**.

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	0000000

Rewriting the price-inflation equation

• Recall the price-inflation equation:

$$\pi_t^p = \beta \mathbb{E}_t \left\{ \pi_{t+1}^p \right\} - \chi_p \widehat{\mu}_t^p.$$

• Now, using the first-order approximation of the aggregate production function (implicitly established on Slide 40 below), we get, at the first order,

$$\begin{split} \widehat{\mu}_{t}^{p} &\equiv \mu_{t}^{p} - \mu^{p} = mpn_{t} - \log(1 - \tau) - \omega_{t} - \mu^{p} = \log\left(\frac{1 - \alpha}{1 - \tau}\right) \\ &+ y_{t} - n_{t} - \omega_{t} - \mu^{p} = \widetilde{y}_{t} - \widetilde{n}_{t} - \widetilde{\omega}_{t} \simeq -\frac{\alpha}{1 - \alpha}\widetilde{y}_{t} - \widetilde{\omega}_{t}, \end{split}$$

where $\tilde{n}_t \equiv n_t - n_t^n$ denotes the employment gap.

• Therefore, the price-inflation equation can be rewritten as

$$\pi_t^{p} = \beta \mathbb{E}_t \left\{ \pi_{t+1}^{p} \right\} + \kappa_p \widetilde{y}_t + \chi_p \widetilde{\omega}_t,$$

where $\kappa_p \equiv \frac{\alpha \chi_p}{1-\alpha}$.

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	0000000

Rewriting the wage-inflation equation

• Similarly, recall the wage-inflation equation:

$$\pi_t^{\mathsf{w}} = \beta \mathbb{E}_t \left\{ \pi_{t+1}^{\mathsf{w}} \right\} - \chi_{\mathsf{w}} \widehat{\mu}_t^{\mathsf{w}}.$$

Now, at the first order,

$$\begin{aligned} \widehat{\mu}_t^w &\equiv \mu_t^w - \mu^w = \omega_t - mrs_t - \mu^w = \widetilde{\omega}_t - (\sigma \widetilde{y}_t + \varphi \widetilde{n}_t) \\ &\simeq \widetilde{\omega}_t - \left(\sigma + \frac{\varphi}{1 - \alpha}\right) \widetilde{y}_t. \end{aligned}$$

• Therefore, the wage-inflation equation can be rewritten as

$$\pi_t^{\mathsf{w}} = \beta \mathbb{E}_t \left\{ \pi_{t+1}^{\mathsf{w}} \right\} + \kappa_{\mathsf{w}} \widetilde{y}_t - \chi_{\mathsf{w}} \widetilde{\omega}_t,$$

where $\kappa_w \equiv \left(\sigma + \frac{\varphi}{1-\alpha}\right) \chi_w$.

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	00000000

Other equilibrium conditions

• The price- and wage-inflation equations involve the endogenous variables π^{p} , π^{w} , $\tilde{\omega}$, and \tilde{y} , the first three of which are linked to each other through the **inflation identity**

$$\Delta \widetilde{\omega}_t = \pi_t^w - \pi_t^p - \Delta \omega_t^n.$$

 Using the goods-market-clearing condition c_t = y_t, the Euler equation can be rewritten as the same **IS equation** as in Chapter 1:

$$\widetilde{y}_{t} = \mathbb{E}_{t}\left\{\widetilde{y}_{t+1}\right\} - \frac{1}{\sigma}\left(i_{t} - \mathbb{E}_{t}\left\{\pi_{t+1}^{p}\right\} - r_{t}^{n}\right),$$

where

$$r_t^n \equiv \bar{i} + \sigma \mathbb{E}_t \{ \Delta y_{t+1}^n \} = \bar{i} + \sigma \psi_{ya}^n \mathbb{E}_t \{ \Delta a_{t+1} \}$$

is the natural rate of interest.

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	000000000

List of equilibrium conditions

• Given $(a_t, i_t)_{t \in \mathbb{N}}$, $(\widetilde{y}_t, \widetilde{\omega}_t, \pi^p_t, \pi^w_t)_{t \in \mathbb{N}}$ is determined by

- the IS equation $\widetilde{y}_t = \mathbb{E}_t \left\{ \widetilde{y}_{t+1} \right\} \frac{1}{\sigma} \left(i_t \mathbb{E}_t \left\{ \pi_{t+1}^p \right\} r_t^n \right)$,
- the price-inflation equation $\pi_t^p = \beta \mathbb{E}_t \left\{ \pi_{t+1}^p \right\} + \kappa_p \widetilde{y}_t + \chi_p \widetilde{\omega}_t$,
- the wage-inflation equation $\pi_t^w = \beta \mathbb{E}_t \left\{ \pi_{t+1}^w \right\} + \kappa_w \widetilde{y}_t \chi_w \widetilde{\omega}_t$,
- the inflation identity $\Delta \widetilde{\omega}_t = \pi_t^w \pi_t^p \Delta \omega_t^n$,

for $t \in \mathbb{N}$.

• Given $(a_t, i_t, \widetilde{y}_t, \widetilde{\omega}_t, \pi_t^p, \pi_t^w)_{t \in \mathbb{N}}$, $(y_t, \omega_t, c_t, n_t)_{t \in \mathbb{N}}$ is determined by

- the definitions $\widetilde{y}_t \equiv y_t y_t^n$ and $\widetilde{\omega}_t \equiv \omega_t \omega_t^n$,
- the goods-market-clearing condition $c_t = y_t$,
- the aggregate production function $y_t = (1 \alpha)n_t + a_t$,

for $t \in \mathbb{N}$.

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	000000000

Determinacy condition for extended Taylor rules I

• Consider the following extension of **Taylor's** (1993) rule, noted R_1 :

$$i_t = \bar{i} + \phi_p \pi_t^p + \phi_w \pi_t^w + \phi_y \tilde{y}_t$$

where $\phi_p \geq 0$, $\phi_w \geq 0$, and $\phi_y \geq 0$.

 Using this rule to replace it in the IS equation, we can rewrite the system made of the four structural equations (in their deterministic version) as
 E_t {X_{t+1}} = A₁X_t, where

$$\mathsf{X}_{t} \equiv \left[\begin{array}{c} \widetilde{y}_{t} \\ \pi_{t}^{\rho} \\ \pi_{t}^{w} \\ \widetilde{\omega}_{t-1} \end{array} \right] \text{ and } \mathsf{A}_{1} \equiv \left[\begin{array}{ccc} 1 + \frac{\kappa_{\rho}}{\beta\sigma} + \frac{\phi_{y}}{\sigma} & \frac{\phi_{\rho}}{\sigma} - \frac{1 + \chi_{\rho}}{\beta\sigma} & \frac{\phi_{w}}{\sigma} + \frac{\chi_{\rho}}{\beta\sigma} & \frac{\chi_{\rho}}{\beta\sigma} \\ -\frac{\kappa_{\rho}}{\beta} & \frac{1 + \chi_{\rho}}{\beta} & \frac{-\chi_{\rho}}{\beta} & -\frac{\chi_{\rho}}{\beta} \\ -\frac{\kappa_{w}}{\beta} & \frac{-\chi_{w}}{\beta} & \frac{1 + \chi_{w}}{\beta} & \frac{\chi_{w}}{\beta} \\ 0 & -1 & 1 & 1 \end{array} \right]$$

so that R_1 ensures determinacy if and only if exactly three eigenvalues of A_1 are outside the unit circle (since the system has three non-predet. variables).

Introduction	Firms	Households	Equilibrium
000	0000	00000000000	0000000

Determinacy condition for extended Taylor rules II

• As shown by Blasselle and Poissonnier (2016), this happens if and only if

$$\phi_p + \phi_w + rac{1-eta}{(1-artheta)\kappa_p + artheta\kappa_w}\phi_y > 1.$$

where $\vartheta \equiv \frac{\chi_P}{\chi_P + \chi_W}$.

- A 1-unit permanent increase in π^{p} leads to a 1-unit permanent increase in π^{w} (through the inflation identity) and, therefore, to a $\frac{1-\beta}{(1-\vartheta)\kappa_{p}+\vartheta\kappa_{w}}$ -unit permanent increase in \widetilde{y} (through the price- and wage-inflation equations).
- So the left-hand side of the **determinacy condition** above represents the permanent increase in the interest rate prescribed by R_1 in response to a 1-unit permanent increase in price inflation.
- Therefore, as in Chapter 3, the determinacy condition corresponds to the **Taylor principle**: in the long term, the (nominal) interest rate should rise by more than the increase in price inflation in order to ensure determinacy.

Social-planner allocation I

- Consider a **benevolent social planner** seeking to maximize RH's welfare given technology.
- Given the absence of state variable (such as the capital stock), its optimization problem is **static**: at each date *t*,

$$\max_{[C_t(i,j), N_t(i,j)]_{0 \le i \le 1, 0 \le j \le 1}} \int_0^1 U[C_t(j), N_t(j)] \, dj$$

subject to

$$\begin{split} C_t(j) &\equiv \left[\int_0^1 C_t(i,j)^{\frac{\epsilon_p - 1}{\epsilon_p}} di\right]^{\frac{\epsilon_p}{\epsilon_p - 1}} \text{ and } N_t(j) \equiv \int_0^1 N_t(i,j) di \text{ for } j \in [0,1], \\ C_t(i) &= A_t N_t(i)^{1 - \alpha} \text{ for } i \in [0,1], \\ C_t(i) &\equiv \int_0^1 C_t(i,j) dj \text{ and } N_t(i) \equiv \left[\int_0^1 N_t(i,j)^{\frac{\epsilon_w - 1}{\epsilon_w}} dj\right]^{\frac{\epsilon_w}{\epsilon_w - 1}} \text{ for } i \in [0,1]. \end{split}$$

Social-planner allocation II

Distortions

000000

• The optimality conditions are similar to their counterparts in Chapter 2:

$$\begin{split} C_t(i,j) &= C_t(j) = C_t(i) = C_t \text{ for } i \in [0,1] \text{ and } j \in [0,1], \\ N_t(i,j) &= N_t(j) = N_t(i) = N_t \text{ for } i \in [0,1] \text{ and } j \in [0,1], \\ &- \frac{U_{n,t}}{U_{c,t}} = MPN_t, \end{split}$$

where $MPN_t \equiv (1 - \alpha)A_t N_t^{-\alpha}$ is the average marginal product of labor.

- Similarly as in Chapter 2, the first and second conditions come from
 - the strict concavity of $C_t(j)$ in each $C_t(i,j)$ (when $\varepsilon_p < +\infty$),
 - the strict concavity of $N_t(i)$ in each $N_t(i,j)$ (when $\varepsilon_w < +\infty$),
 - the strict concavity of $C_t(i)$ in $N_t(i)$ (when $\alpha > 0$).
- As in Chapter 2, the **third condition** equalizes the MRS between consumption and work to the corresponding marginal rate of transformation.

Distortions	Loss function	Optimal MP
00000	00000000	000000000000000000000000000000000000000

Distortions

- The model is characterized by **four distortions**:
 - monopolistic competition in the goods market,
 - monopolistic competition in the labor market,
 - sticky prices,
 - sticky wages.
- The two monopolistic-competition distortions are effective
 - at the steady state (unless they are exactly offset by the subsidy τ),
 - not in response to shocks (given the absence of cost-push shocks).
- The two nominal-rigidity distortions are effective
 - in response to shocks (unless the desired price and wage are constant),
 - not at the steady state (since prices and wages are then constant).

Condition for natural-allocation efficiency I

• Consider the following value for the constant **employment subsidy** τ :

$$\tau = \frac{\mathcal{M}_{p}\mathcal{M}_{w} - 1}{\mathcal{M}_{p}\mathcal{M}_{w}},$$

where

• $\mathcal{M}_{\rho} \equiv \frac{\varepsilon_{\rho}}{\varepsilon_{\rho}-1} > 1$ is the gross price markup under flexible prices, • $\mathcal{M}_{w} \equiv \frac{\varepsilon_{w}}{\varepsilon_{w}-1} > 1$ is the gross wage markup under flexible wages.

- This value of τ exactly offsets the two monopolistic-competition distortions, i.e. removes the overall **steady-state distortion**.
- Therefore, it is such that the **natural allocation** (i.e. the flexible-price-andwage equilibrium) is **efficient** (i.e. coincides with the social-planner alloc.).

Condition for natural-allocation efficiency II

- Indeed, if prices and wages were perfectly flexible, then
 - all firms would choose the same price at each date,
 - all households would choose the same wage at each date,

so that the first two optimality conditions would be met.

• Moreover, these price P_t and wage W_t would be such that

$$\frac{W_t}{P_t} = -\frac{U_{n,t}}{U_{c,t}}\mathcal{M}_w \text{ and } P_t = \mathcal{M}_p \frac{(1-\tau)W_t}{MPN_t},$$

so that the **third optimality condition** would be met when $\tau = \frac{\mathcal{M}_{\rho}\mathcal{M}_{w}-1}{\mathcal{M}_{\rho}\mathcal{M}_{w}}$.

Distortions	Loss function	Optimal MP
0000000	00000000	000000000000000000000000000000000000000

MP and the (efficient) natural allocation I

• In Chapter 2, in the absence of steady-state distortion and cost-push shocks,

- the natural allocation was efficient,
- MP could achieve the natural allocation (by setting $i_t = r_t^n$).
- Here, in the absence of steady-state distortion and cost-push shocks,
 - the natural allocation is also efficient, as we have just shown,
 - but MP cannot achieve the natural allocation, as we now show.
- The natural allocation requires that
 - $\tilde{y}_t = 0$, so that output is at its natural level,
 - $\widetilde{\omega}_t = 0$, so that the real wage is at its natural level,
 - $\pi_t^p = 0$, so that all firms have the same price,
 - $\pi_t^w = 0$, so that all households have the same wage.

MP and the (efficient) natural allocation II

- Now, given $(a_t, i_t)_{t \in \mathbb{N}}$, $(\widetilde{y}_t, \widetilde{\omega}_t, \pi^p_t, \pi^w_t)_{t \in \mathbb{N}}$ is determined by
 - the IS equation $\widetilde{y}_t = \mathbb{E}_t \left\{ \widetilde{y}_{t+1} \right\} \frac{1}{\sigma} \left(i_t \mathbb{E}_t \left\{ \pi_{t+1}^p \right\} r_t^n \right)$,
 - the price-inflation equation $\pi_t^p = \beta \mathbb{E}_t \left\{ \pi_{t+1}^p \right\} + \kappa_p \widetilde{y}_t + \chi_p \widetilde{\omega}_t$,
 - the wage-inflation equation $\pi_t^w = \beta \mathbb{E}_t \left\{ \pi_{t+1}^w \right\} + \kappa_w \widetilde{y}_t \chi_w \widetilde{\omega}_t$,
 - the inflation identity $\Delta \widetilde{\omega}_t = \pi_t^w \pi_t^p \Delta \omega_t^n$.
- Therefore, whatever $(i_t)_{t\in\mathbb{N}}$, and in particular even for $(i_t)_{t\in\mathbb{N}} = (r_t^n)_{t\in\mathbb{N}}$, we cannot have $(\tilde{y}_t, \tilde{\omega}_t, \pi_t^p, \pi_t^w) = (0, 0, 0, 0)$ for all $t \in \mathbb{N}$.
- Thus, MP cannot achieve the natural allocation: even if CB observes in real time the technology shock a_t (from which it can infer rⁿ_t), the natural allocation is not feasible (in the sense given to that term in Chapter 3).
- The reason is that to make the real wage coincide with the natural real wage, you need either flexible nominal wages, or flexible prices, or both.

Determination of the welfare-loss function I

- We now derive the second-order approximation of RH's utility around the ZIRSS.
- Recall from Chapter 2 that, for any variable Z_t , we have

$$rac{Z_t-Z}{Z}\simeq \widehat{z}_t+rac{\widehat{z}_t^2}{2},$$

where $\hat{z}_t \equiv z_t - z$ is the log-deviation of Z_t from its ZIRSS value.

• Therefore, using the market-clearing condition $\hat{c}_t = \hat{y}_t$, we get

$$\int_0^1 \left[U_t(j) - U \right] dj \simeq U_c C \left(\widehat{y}_t + \frac{1 - \sigma}{2} \widehat{y}_t^2 \right) + U_n N \left[\int_0^1 \widehat{n}_t(j) dj + \frac{1 + \varphi}{2} \int_0^1 \widehat{n}_t(j)^2 dj \right].$$

Distortions	
0000000	

Determination of the welfare-loss function II

 $\bullet~$ Up to a second-order approximation, we have

$$\widehat{n}_t + \frac{1}{2}\widehat{n}_t^2 \simeq \int_0^1 \widehat{n}_t(j)dj + \frac{1}{2}\int_0^1 \widehat{n}_t(j)^2dj,$$

where $N_t \equiv \int_0^1 N_t(j) dj$ denotes aggregate employment at date t.

• Using the labor-demand equation $\widehat{n}_t(j) - \widehat{n}_t = -\varepsilon_w \, \widehat{w}_t(j),$ we also get

$$\begin{split} \int_0^1 \widehat{n}_t(j)^2 dj &= \int_0^1 \left[\widehat{n}_t(j) - \widehat{n}_t + \widehat{n}_t \right]^2 dj \\ &= \widehat{n}_t^2 - 2\widehat{n}_t \varepsilon_w \int_0^1 \widehat{w}_t(j) dj + \varepsilon_w^2 \int_0^1 \widehat{w}_t(j)^2 dj. \end{split}$$

We admit the following result (whose proof is similar to Lemma 1's):
 Lemma 3: up to a second-order approx., ∫₀¹ ŵ_t(j)dj ≃ ε_w-1/2 var_j {w_t(j)}.

Determination of the welfare-loss function III

• We can then rewrite $\int_0^1 \left[U_t(j) - U \right] dj$ as

$$\int_{0}^{1} \left[U_{t}(j) - U \right] dj \simeq U_{c} C \left(\widehat{y}_{t} + \frac{1 - \sigma}{2} \widehat{y}_{t}^{2} \right)$$
$$+ U_{n} N \left[\widehat{n}_{t} + \frac{1 + \varphi}{2} \widehat{n}_{t}^{2} + \frac{\varepsilon_{w}^{2} \varphi}{2} \operatorname{var}_{j} \{ w_{t}(j) \} \right].$$

• As in Chapter 2, we then derive a relationship between aggregate employment and output:

$$\begin{split} \mathsf{N}_t &= \int_0^1 \int_0^1 \mathsf{N}_t(i,j) dj di = \int_0^1 \mathsf{N}_t(i) \int_0^1 \frac{\mathsf{N}_t(i,j)}{\mathsf{N}_t(i)} dj di = \Delta_{w,t} \int_0^1 \mathsf{N}_t(i) di \\ &= \Delta_{w,t} \left(\frac{Y_t}{A_t}\right)^{\frac{1}{1-\alpha}} \int_0^1 \left[\frac{Y_t(i)}{Y_t}\right]^{\frac{1}{1-\alpha}} di = \Delta_{w,t} \Delta_{p,t} \left(\frac{Y_t}{A_t}\right)^{\frac{1}{1-\alpha}}, \\ &\text{where } \Delta_{w,t} \equiv \int_0^1 \left[\frac{W_t(j)}{W_t}\right]^{-\varepsilon_w} dj \text{ and } \Delta_{p,t} \equiv \int_0^1 \left[\frac{P_t(i)}{P_t}\right]^{\frac{-\varepsilon_p}{1-\alpha}} di. \end{split}$$

39 / 60

Determination of the welfare-loss function IV

• Therefore, we get (under the normalization a = 0)

$$(1-\alpha)\widehat{n}_t = \widehat{y}_t - a_t + d_{w,t} + d_{p,t},$$

where $d_{w,t} \equiv (1 - \alpha) \log \Delta_{w,t}$ and $d_{p,t} \equiv (1 - \alpha) \log \Delta_{p,t}$.

- We know from Lemma 1 that, up to a second-order approximation, $d_{p,t} \simeq \frac{\varepsilon_p}{2\Theta} \operatorname{var}_i \{ p_t(i) \}$, where $\Theta \equiv \frac{1-\alpha}{1-\alpha+\alpha\varepsilon_p}$.
- We admit the following result (whose proof is also similar to Lemma 1's):
 Lemma 4: up to a second-order approx., d_{w,t} ≃ (1-α)ε_w/2 var_j {w_t(j)}.

Determination of the welfare-loss function V

• We can then rewrite $\int_0^1 \left[U_t(j) - U \right] dj$ as

$$\begin{split} \int_{0}^{1} \left[U_t(j) - U \right] dj &\simeq U_c C \left(\widehat{y}_t + \frac{1 - \sigma}{2} \widehat{y}_t^2 \right) + \frac{U_n N}{1 - \alpha} \left[\widehat{y}_t + \frac{\varepsilon_p}{2 \Theta} \mathsf{var}_i \{ \mathsf{p}_t(i) \} \right. \\ &\left. + \frac{Y}{2} \mathsf{var}_j \{ \mathsf{w}_t(j) \} + \frac{1 + \varphi}{2(1 - \alpha)} \int_{0}^{1} \left(\widehat{y}_t - \mathsf{a}_t \right)^2 dj \right] + t.i.p., \end{split}$$

where $Y\equiv(1-\alpha)(1+\varepsilon_w \varphi)\varepsilon_w$ and t.i.p. stands again for "terms independent of policy."

• Let Φ denote the size of the steady-state distortion, implicitly defined by $-\frac{U_n}{U_c} = MPN(1-\Phi)$, and assumed to be "small" (i.e. a first-order term).

Determination of the welfare-loss function VI

• Using $MPN = (1 - \alpha) \frac{Y}{N}$ and ignoring the *t.i.p.* terms, we get

$$\begin{split} \int_{0}^{1} \frac{U_{t}(j) - U}{U_{c}C} dj &\simeq \hat{y}_{t} + \frac{1 - \sigma}{2} \hat{y}_{t}^{2} - (1 - \Phi) \left[\hat{y}_{t} + \frac{\varepsilon_{p}}{2\Theta} \operatorname{var}_{i} \{ p_{t}(i) \} \right. \\ &\qquad + \frac{Y}{2} \operatorname{var}_{j} \{ w_{t}(j) \} + \frac{1 + \varphi}{2(1 - \alpha)} (\hat{y}_{t} - a_{t})^{2} \right] \\ &\simeq \Phi \hat{y}_{t} - \frac{1}{2} \left[\frac{\varepsilon_{p}}{\Theta} \operatorname{var}_{i} \{ p_{t}(i) \} + \operatorname{Yvar}_{j} \{ w_{t}(j) \} \right. \\ &\qquad - (1 - \sigma) \hat{y}_{t}^{2} + \frac{1 + \varphi}{1 - \alpha} (\hat{y}_{t} - a_{t})^{2} \right] \\ &= \Phi \hat{y}_{t} - \frac{1}{2} \left[\frac{\varepsilon_{p}}{\Theta} \operatorname{var}_{i} \{ p_{t}(i) \} + \operatorname{Yvar}_{j} \{ w_{t}(j) \} \right. \\ &\qquad + \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha} \right) \hat{y}_{t}^{2} - 2 \left(\frac{1 + \varphi}{1 - \alpha} \right) \hat{y}_{t} a_{t} \right] \end{split}$$

Determination of the welfare-loss function VII

$$= \Phi \hat{y}_{t} - \frac{1}{2} \left[\frac{\varepsilon_{p}}{\Theta} \operatorname{var}_{i} \{ p_{t}(i) \} + \operatorname{Yvar}_{j} \{ w_{t}(j) \} + \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha} \right) (\hat{y}_{t}^{2} - 2 \hat{y}_{t} \hat{y}_{t}^{e}) \right]$$

$$= \Phi \tilde{y}_{t} - \frac{1}{2} \left[\frac{\varepsilon_{p}}{\Theta} \operatorname{var}_{i} \{ p_{t}(i) \} + \operatorname{Yvar}_{j} \{ w_{t}(j) \} + \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha} \right) (\tilde{y}_{t})^{2} \right],$$

where we have used $\widehat{y}_t^e \equiv y_t^e - y^e = \frac{1+\varphi}{\sigma(1-\alpha)+\varphi+\alpha}a_t$ and $\widetilde{y}_t \equiv y_t - y_t^n = y_t - (y_t^e - y^e + y) = \widehat{y}_t - \widehat{y}_t^e$.

- As in Chapter 2, we get, up to first order, $\Phi \simeq \left(\sigma + \frac{\varphi + \alpha}{1 \alpha}\right) x^*$.
- Therefore, ignoring again the *t.i.p.* terms, we get

$$\frac{U_t - U}{U_c C} \simeq -\frac{1}{2} \left[\frac{\varepsilon_p}{\Theta} \operatorname{var}_i \{ p_t(i) \} + \operatorname{Yvar}_j \{ w_t(j) \} + \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha} \right) (\widetilde{y}_t - x^*)^2 \right]$$

Determination of the welfare-loss function VIII

• We admit the following result (whose proof is similar to Lemma 2's): Lemma 5: $\sum_{t=0}^{+\infty} \beta^t \operatorname{var}_j \{ w_t(j) \} \simeq \frac{\theta_w}{(1-\beta\theta_w)(1-\theta_w)} \sum_{t=0}^{+\infty} \beta^t (\pi_t^w)^2$.

• Using Lemmas 2 and 5, we then get
$$\mathbb{E}_0\left\{\sum_{t=0}^{+\infty}\beta^t\left(rac{U_t-U}{U_cC}
ight)
ight\}\simeq t.i.p.-rac{1}{2} imes$$

$$\mathbb{E}_{0}\left\{\sum_{t=0}^{+\infty}\beta^{t}\left[\frac{\varepsilon_{p}}{\chi_{p}}\left(\pi_{t}^{p}\right)^{2}+\frac{(1-\alpha)\varepsilon_{w}}{\chi_{w}}\left(\pi_{t}^{w}\right)^{2}+\left(\sigma+\frac{\varphi+\alpha}{1-\alpha}\right)\left(\widetilde{y}_{t}-x^{*}\right)^{2}\right]\right\}.$$

• Hence the welfare-loss function

$$L_{0} \equiv \mathbb{E}_{0} \left\{ \sum_{t=0}^{+\infty} \beta^{t} \left[\lambda_{p} \left(\pi_{t}^{p} \right)^{2} + \lambda_{w} \left(\pi_{t}^{w} \right)^{2} + \lambda_{y} (\tilde{y}_{t} - x^{*})^{2} \right] \right\},$$

where
$$\lambda_{p} \equiv \frac{\varepsilon_{p}}{\chi_{p}}$$
, $\lambda_{w} \equiv \frac{(1-\alpha)\varepsilon_{w}}{\chi_{w}}$, and $\lambda_{y} \equiv \left(\sigma + \frac{\phi+\alpha}{1-\alpha}\right)$.

Interpretation of the welfare-loss function

- This welfare-loss function is identical to Chapter 2's (up to the constant multiplicative factor λ_p), except that it also involves π^w_t because
 - every variation in the general level of wages (i.e. every deviation of π^w_t from zero) implies a **wage dispersion**,
 - this wage dispersion is sub-optimal given the strict concavity of $N_t(i)$ in each $N_t(i,j)$ ($\varepsilon_w < +\infty$).
- The weight λ_w of the π_t^w -stabilization objective is increasing in
 - the elasticity of substitution between labor types ε_w ,
 - the elasticity of output with respect to labor input $1-\alpha,$
 - the degree of wage stickiness $\theta_{w},$

because these elasticities amplify the negative effect on aggregate productivity of any given wage dispersion, and θ_w raises the degree of wage dispersion resulting from any given wage-inflation rate different from zero.

Distortions

Distortions	Loss function	Optimal MP
000000	00000000	000000000000000000000000000000000000000

Optimal MP

- We now study **optimal MP** in four alternative cases:
 - sticky prices, flexible wages $(\theta_w \rightarrow 0)$,
 - 2 flexible prices, sticky wages $(\theta_p \rightarrow 0)$,
 - sticky prices and wages (general case),
 - sticky prices and wages (specific case $\kappa_p = \kappa_w$ and $\varepsilon_p = (1 \alpha)\varepsilon_w$).
- In all these cases, we assume that the employment subsidy exactly offsets the monopolistic-competition distortions:

$$\tau = \frac{\mathcal{M}_{p}\mathcal{M}_{w} - 1}{\mathcal{M}_{p}\mathcal{M}_{w}}$$

• Therefore,

- there is no steady-state distortion $(x^* = 0)$,
- the natural allocation $(\tilde{y}_t = \tilde{\omega}_t = 0)$ is efficient.

Optimal MP when wages are flexible I

- When θ_w → 0, the model collapses to the basic NK model studied in Chapters 1 and 2 (in the absence of steady-state dist. and cost-push shocks).
- Indeed, when $\theta_w
 ightarrow 0$, the wage-inflation equation becomes

$$\widetilde{\omega}_t = \left(\sigma + \frac{\varphi}{1-\alpha}\right)\widetilde{y}_t,$$

like in Chapter 1, where we had $\widetilde{\omega}_t \simeq \sigma \widetilde{c}_t + \varphi \widetilde{n}_t = \left(\sigma + \frac{\varphi}{1-\alpha}\right) \widetilde{y}_t.$

• Therefore, the price-inflation equation becomes

$$\pi_t^p = \beta \mathbb{E}_t \left\{ \pi_{t+1}^p \right\} + \overline{\kappa}_p \widetilde{y}_t,$$

where $\overline{\kappa}_{p} \equiv \left(\sigma + \frac{\phi + \alpha}{1 - \alpha}\right) \chi_{p}$, like in Chapter 1.

• The IS equation $\widetilde{y}_t = \mathbb{E}_t \{ \widetilde{y}_{t+1} \} - \frac{1}{\sigma} \left(i_t - \mathbb{E}_t \{ \pi_{t+1}^p \} - r_t^n \right)$ and identity $\Delta \widetilde{\omega}_t = \pi_t^w - \pi_t^p - \Delta \omega_t^n$ remain unchanged, and both held in Chapter 1.

Optimal MP when wages are flexible II

Finally, wage-inflation volatility becomes costless (λ_w = 0), so that the welfare-loss function simplifies to

$$L_{0} \equiv \mathbb{E}_{0}\left\{\sum_{t=0}^{+\infty}\beta^{t}\left[\lambda_{p}\left(\pi_{t}^{p}\right)^{2}+\lambda_{y}\left(\widetilde{y}_{t}\right)^{2}\right]\right\},$$

like in Chapter 2 (up to the constant multiplicative factor λ_p).

- So we obtain the same equilibrium conditions and welfare-loss function as in Chapters 1 and 2 (without steady-state dist. and cost-push shocks).
- Therefore, given Chapter 2's results, optimal MP
 - achieves the (efficient) natural allocation ($\widetilde{y}_t = \widetilde{\omega}_t = 0$),
 - tracks the natural rate of interest $(i_t = r_t^n)$,
 - fully stabilizes price inflation $(\pi_t^p = 0)$,
 - lets wage inflation adjust as needed to make the real wage track the natural real wage ($\pi_t^w = \Delta \omega_t^n$).

w

Optimal MP when prices are flexible I

• When $\theta_p \rightarrow 0$, the price-inflation equation becomes

$$\widetilde{\omega}_t = \frac{-\alpha}{1-\alpha}\widetilde{y}_t.$$

• Therefore, the wage-inflation equation becomes

$$\pi_t^w = \beta \mathbb{E}_t \left\{ \pi_{t+1}^w \right\} + \overline{\kappa}_w \widetilde{y}_t,$$
here $\overline{\kappa}_w \equiv \left(\sigma + \frac{\varphi + \alpha}{1 - \alpha} \right) \chi_w.$

• The IS equation and inflation identity remain unchanged:

$$\widetilde{y}_{t} = \mathbb{E}_{t} \{ \widetilde{y}_{t+1} \} - \frac{1}{\sigma} \left(i_{t} - \mathbb{E}_{t} \{ \pi_{t+1}^{p} \} - r_{t}^{n} \right), \\ \Delta \widetilde{\omega}_{t} = \pi_{t}^{w} - \pi_{t}^{p} - \Delta \omega_{t}^{n}.$$

stortions	Loss function
000000	00000000

Optimal MP when prices are flexible II

 Finally, price-inflation volatility becomes costless (λ_p = 0), so that the welfare-loss function simplifies to

$$L_{0} \equiv \mathbb{E}_{0} \left\{ \sum_{t=0}^{+\infty} \beta^{t} \left[\lambda_{w} \left(\pi_{t}^{w} \right)^{2} + \lambda_{y} \left(\widetilde{y}_{t} \right)^{2} \right] \right\}.$$

- Optimal MP minimizes this welfare-loss function subject to the four equilibrium conditions on the previous slide.
- Therefore, optimal MP
 - achieves the (efficient) natural allocation ($\tilde{y}_t = \tilde{\omega}_t = 0$),
 - fully stabilizes wage inflation ($\pi^w_t = 0$),
 - lets price inflation adjust as needed to make the real wage track the natural real wage $(\pi_t^p = -\Delta \omega_t^n)$.

Optimal MP in the general case I

- We now determine optimal MP under commitment at date 0 when both prices and wages are sticky (θ_p > 0 and θ_w > 0).
- As in Chapter 2, we proceed for simplicity as if CB, at each date t,
 - directly controlled not only i_t , but also \tilde{y}_t , $\tilde{\omega}_t$, π_t^p , and π_t^w ,
 - observed the history of the exogenous shock $(a_{t-k})_{k\geq 0}$.
- As in Chapter 2, since i_t appears only in the IS equation, we have

$$\begin{split} & \underset{\left(i_{t},\widetilde{y}_{t},\widetilde{\omega}_{t},\pi_{t}^{\rho},\pi_{t}^{w}\right)_{t\in\mathbb{N}}}{\min} L_{0} \text{ subject to (IS), (PI), (WI), (II)} \\ & \longleftrightarrow \min_{\left(\widetilde{y}_{t},\widetilde{\omega}_{t},\pi_{t}^{\rho},\pi_{t}^{w}\right)_{t\in\mathbb{N}}} L_{0} \text{ subject to (PI), (WI), (II),} \end{split}$$

where (IS), (PI), (WI), and (II) denote respectively the IS equation, the price- and wage-inflation equations, and the inflation identity.

Optimal MP in the general case II

The reduced optimal-MP problem is therefore, given ω
₋₁, to choose, at date 0, (y
_t, ω
_t, π^p_t, π^w_t) as a function of (a_{t-k})_{0≤k≤t} for all t ≥ 0, to minimize

$$L_{0} \equiv \mathbb{E}_{0} \left\{ \sum_{t=0}^{+\infty} \beta^{t} \left[\lambda_{p} \left(\pi_{t}^{p} \right)^{2} + \lambda_{w} \left(\pi_{t}^{w} \right)^{2} + \lambda_{y} (\widetilde{y}_{t})^{2} \right] \right\},$$

subject to

- the price-inflation equation $\pi_t^p = \beta \mathbb{E}_t \left\{ \pi_{t+1}^p \right\} + \kappa_p \widetilde{y}_t + \chi_p \widetilde{\omega}_t$ (PI),
- the wage-inflation equation $\pi_t^w = \beta \mathbb{E}_t \{ \pi_{t+1}^w \} + \kappa_w \widetilde{y}_t \chi_w \widetilde{\omega}_t$ (WI),
- the inflation identity $\Delta \widetilde{\omega}_t = \pi^w_t \pi^p_t \Delta \omega^n_t$ (II),

for all $t \geq 0$.

Let 2β^tξ_{1,t}, 2β^tξ_{2,t}, and 2β^tξ_{3,t} denote respectively the Lagrange multipliers associated with the constraints (PI), (WI), and (II) at date t ∈ N.

Optimal MP in the general case III

- The corresponding first-order conditions (FOCs) are
 - $\lambda_y \widetilde{y}_t + \kappa_p \xi_{1,t} + \kappa_w \xi_{2,t} = 0,$
 - $\lambda_p \pi^p_t \Delta \xi_{1,t} + \xi_{3,t} = 0,$
 - $\lambda_w \pi^w_t \Delta \xi_{2,t} \xi_{3,t} = 0,$
 - $\chi_{P}\xi_{1,t} \chi_{w}\xi_{2,t} + \xi_{3,t} \beta \mathbb{E}_{t} \{\xi_{3,t+1}\} = 0,$
 - for $t \in \mathbb{N}$, where $\xi_{1,-1} \equiv 0$ and $\xi_{2,-1} \equiv 0$.

Optimal MP in the general case IV

• The system made of (PI), (WI), (II), and these FOCs can be written in Blanchard and Kahn's (1980) form $\mathbb{E}_t \{ Z_{t+1} \} = A_2 Z_t + B\Delta a_t$, where

$$\mathsf{Z}_t \equiv \left[\begin{array}{ccc} \widetilde{\mathsf{y}}_t & \pi^p_t & \pi^w_t & \widetilde{\omega}_{t-1} & \xi_{1,t-1} & \xi_{2,t-1} & \xi_{3,t} \end{array}\right]',$$

 $\mathsf{A}_2 \in \mathbb{R}^{7 \times 7}, \text{ and } \mathsf{B} \in \mathbb{R}^{7 \times 1}.$

- This system can be shown to meet Blanchard and Kahn's (1980) conditions and hence to have a unique stat. solution (Giannoni and Woodford, 2010).
- The next slide displays the responses of \tilde{y}_t , π_t^p , π_t^w , and ω_t to ε_0^a at this unique local equilibrium, given the process $a_t = \rho_a a_{t-1} + \varepsilon_t^a$,
 - for sticky prices and sticky wages ($heta_p > 0$ and $heta_w > 0$),
 - for sticky prices and flexible wages ($heta_p > 0$ and $heta_w
 ightarrow 0$),
 - for flexible prices and sticky wages ($\theta_p \rightarrow 0$ and $\theta_w > 0$).

Optimal MP in the general case V

Effects of a technology shock under optimal MP

Monetary Economics

Optimal MP in the general case VI

- ullet As already seen, the natural allocation ($\widetilde{y}_t=0,\,\omega_t=\omega_t^n)$ can be achieved
 - when wages are flexible, by setting $\pi_t^p = 0$ and π_t^w such that $\omega_t = \omega_t^n$,
 - when prices are flexible, by setting $\pi_t^w = 0$ and π_t^p such that $\omega_t = \omega_t^n$.
- When both prices and wages are sticky, the natural allocation cannot be achieved, and **optimal MP strikes a balance** between
 - setting (\tilde{y}_t, ω_t) as close as possible to $(0, \omega_t^n)$,
 - setting (π_t^p, π_t^w) as close as possible to (0, 0).
- Therefore, in that case,
 - ω_t rises, but not as much as ω_t^n ,
 - the fact that $\omega_t < \omega_t^n$ implies that $\widetilde{y}_t > 0$,
 - the rise in ω_t is obtained through a mix of lower π_t^p and higher π_t^w .

Optimal MP in a specific case I

- Lastly, we consider the case in which both prices and wages are sticky $(\theta_p > 0 \text{ and } \theta_w > 0)$, $\kappa_p = \kappa_w \equiv \kappa$, and $\varepsilon_p = (1 \alpha)\varepsilon_w \equiv \varepsilon$.
- In that case, the first three FOCs lead to

$$\chi_w \pi_t^p + \chi_p \pi_t^w = -\frac{\chi_p + \chi_w}{\varepsilon} \Delta \widetilde{y}_t \text{ for } t \ge 0, \text{ where } \widetilde{y}_{-1} \equiv 0.$$

• Let π_t denote a weighted average of price and wage inflation:

$$\pi_t \equiv (1 - \vartheta)\pi_t^{p} + \vartheta \pi_t^{w},$$

where, as a reminder, $\vartheta \equiv \frac{\chi_P}{\chi_P + \chi_w}$.

• The above optimality condition can then be rewritten as

$$\pi_t = -\frac{1}{\varepsilon}\Delta \widetilde{y}_t \ \, \text{for} \, \, t\geq 0.$$

57 / 60

Optimal MP in a specific case II

• The previous optimality condition can be rewritten as

$$\widehat{q}_t = -rac{1}{arepsilon} \widetilde{y}_t \;\; ext{for} \; t \geq 0,$$

where $\hat{q}_t \equiv q_t - q_{-1}$ and $q_t \equiv (1 - \vartheta)p_t + \vartheta w_t$ is a weighted average of the (log) price and wage levels.

• Now, the price- and wage-inflation equations can be combined to get

$$\pi_t = \beta \mathbb{E}_t \left\{ \pi_{t+1} \right\} + \kappa \widetilde{y}_t.$$

• The last two results, together with $\pi_t = \widehat{q}_t - \widehat{q}_{t-1}$, imply

$$\widehat{q}_t = \gamma \widehat{q}_{t-1} + eta \gamma \mathbb{E}_t \left\{ \widehat{q}_{t+1}
ight\} \;\; ext{ for } t \geq \mathsf{0},$$

where $\gamma \equiv rac{1}{1+eta+\kappaarepsilon}.$

Optimal MP in a specific case III

• The last equation can be written in Blanchard and Kahn's (1980) form $\mathbb{E}_t \{Q_{t+1}\} = A_3 Q_t$, where

$$\mathsf{Q}_t \equiv \left[egin{array}{c} \widehat{q}_t \ \widehat{q}_{t-1} \end{array}
ight] \ \ \, ext{and} \ \ \, \mathsf{A}_3 \equiv \left[egin{array}{c} rac{1}{eta\gamma} & rac{-1}{eta} \ 1 & 0 \end{array}
ight].$$

• The eigenvalues of A₃,

$$egin{array}{rcl} \delta &\equiv & rac{1-\sqrt{1-4eta\gamma^2}}{2eta\gamma}, \ \delta' &\equiv & rac{1+\sqrt{1-4eta\gamma^2}}{2eta\gamma}, \end{array}$$

are such that 0 $<\delta<1$ and $\delta'>1.$

Optimal MP in a specific case IV

- So the system has
 - one non-predetermined variable $(\mathbb{E}_t \{ \widehat{q}_{t+1} \})$,
 - one eigenvalue outside the unit circle ($\delta'>1),$

and therefore a unique stationary solution.

- Given that $\hat{q}_{-1} = 0$, this unique stationary solution is $\hat{q}_t = 0$ for $t \ge 0$, which implies $\pi_t = 0$ and $\tilde{y}_t = 0$ for $t \ge 0$.
- Therefore, optimal MP fully stabilizes
 - a weighted average of price and wage inflation, with the weight of price (wage) inflation increasing in the degree of price (wage) stickiness,
 - the output gap.